- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Giant Heterometallic $\mathrm{Cu}_{17} \mathrm{Mn}_{28}$ Cluster with T_{d} Symmetry and High-Spin Ground State

Wen-Guo Wang, ${ }^{\dagger}$ Ai-Ju Zhou, ${ }^{\dagger}$ Wei-Xiong Zhang, ${ }^{\dagger}$ Ming-Liang Tong, ${ }^{*}{ }^{\dagger}$ Xiao-Ming Chen, ${ }^{\dagger}$ Motohiro Nakano, ${ }^{\S}$ Christopher C. Beedle, \ddagger and David N. Hendrickson*, \ddagger
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, Department of Applied Chemistry, Osaka University, Suita 565-0871, Osaka, Japan, and Department of Chemistry and Biochemistry-0358, University of California at San Diego, La Jolla, California 92093-0358

Received August 7, 2006; E-mail: tongml@mail.sysu.edu.cn; dhendrickson@ucsd.edu

Since the 1990s, manganese clusters with large spin ground states have received increasing attention mainly due to their singlemolecule magnet behavior. ${ }^{1,2}$ A number of high nuclearity homometallic manganese complexes from Mn_{16} to Mn_{84} have been explored to date. ${ }^{3-11}$ However, the rational synthesis of high nuclear heterometallic manganese clusters remains a challenge. Triethanolamine (teaH H_{3}) is a potentially versatile ligand, and several polynuclear complexes have been recently reported. ${ }^{12}$ Enlightened by the facile reactions of zerovalent copper with $\mathrm{Co}^{\mathrm{II}} / \mathrm{Zn}^{\mathrm{II}} / \mathrm{Cd}^{\mathrm{II}} / \mathrm{Pd}^{\mathrm{II}}$ salts and aminoalcohols, ${ }^{13}$ we tried to extend such reactions into a new synthetic route to heterometallic manganese clusters. We report herein the synthesis, structure, and magnetic properties of a giant heterometallic $\mathrm{Cu}_{4} \mathrm{Cu}^{\mathrm{II}}{ }_{13} \mathrm{Mn}^{\mathrm{II}}{ }_{4} \mathrm{Mn}^{\mathrm{III}}{ }_{12} \mathrm{Mn}^{\mathrm{IV}}{ }_{12}$ cluster, $\left[\mathrm{Cu}_{17} \mathrm{Mn}_{28} \mathrm{O}_{40}-\right.$ (tea) $\left.{ }_{12}\left(\mathrm{HCO}_{2}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 36 \mathrm{H}_{2} \mathrm{O}$ (1). To our knowledge, $\mathbf{1}$ is the largest manganese teaH3 ${ }_{3}$ cluster and unprecedented with five metal oxidation states.

The reaction of copper powder, $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, and teaH H_{3} in a 1:2:1 ratio in N, N^{\prime}-dimethylformamide (DMF) $(30 \mathrm{~mL})$ at $85^{\circ} \mathrm{C}$ gave a dark green solution from which dark block crystals of $\mathbf{1}$ were slowly deposited after several months. The in situ generated formate ligand arises from hydrolysis of DMF which has been previously documented. ${ }^{14}$

The crystal structure of $\mathbf{1}^{15}$ contains a giant $\left[\mathrm{Cu}_{17} \mathrm{Mn}_{28} \mathrm{O}_{40}\right]^{42+}$ core of T_{d} symmetry with $4 \mathrm{Cu}^{\mathrm{I}}$ ions, $13 \mathrm{Cu}^{\mathrm{II}}$ ions, $4 \mathrm{Mn}^{\mathrm{II}}$ ions, 12 $\mathrm{Mn}^{\mathrm{III}}$ ions, $12 \mathrm{Mn}^{\mathrm{IV}}$ ions, $28 \mu_{4}-\mathrm{O}^{2-}$, and $12 \mu_{3}-\mathrm{O}^{2-}$ ions. Each $\mu_{4}-\mathrm{O}^{2-}$ ion joins three Mn ions and one Cu ion $\left(2 \mathrm{Mn}^{\mathrm{III}}+\mathrm{Mn}^{\mathrm{II}}+\right.$ $\mathrm{Cu}^{\mathrm{II}}$ or $2 \mathrm{Mn}^{\mathrm{IV}}+\mathrm{Mn}^{\text {III }}+\mathrm{Cu}^{\mathrm{I}}$ or $3 \mathrm{Mn}^{\text {IV }}+\mathrm{Cu}^{\mathrm{II}}$), while each $\mu_{3}-\mathrm{O}^{2-}$ ion joins one $\mathrm{Mn}^{\mathrm{IV}}$ ion and two $\mathrm{Mn}^{\mathrm{III}}$ ions. There are five metal oxidation states of $\mathrm{Mn}^{2+}, \mathrm{Mn}^{3+}, \mathrm{Mn}^{4+}, \mathrm{Cu}^{+}$, and Cu^{2+} in $\mathbf{1}$, which were established by consideration of bond lengths, bond valence sum (BVS) calculations, ${ }^{16}$ charge considerations, and the observation of Jahn-Teller (JT) distortions for the $\mathrm{Mn}^{\mathrm{II}}$ centers. The $\left[\mathrm{Cu}_{17}-\right.$ $\left.\mathrm{Mn}_{28} \mathrm{O}_{40}\right]^{42+}$ core is surrounded by 12 tea ${ }^{3-}$ groups, $6 \mathrm{HCO}_{2}{ }^{-}$ groups, and 4 aqua ligands into a neutral cluster (Figure 1).

Each Cu^{I} ion is coordinated in a tetrahedral geometry by three $\mu_{4}-\mathrm{O}^{2-}$ ions and one aqua ligand. The $\mathrm{Cu}^{I I}$ ions have two different coordination environments: the central Cu 1 ion is coordinated in a perfect tetrahedral environment by $4 \mu_{4}-\mathrm{O}^{2-}$ ions $(\mathrm{Cu}-\mathrm{O}=1.975-$ (11) \AA), while each of the outer 12 symmetry-related Cu 3 ions is coordinated in a distorted trigonal bipyramidal environment by three alkoxo O atoms in the plane ($\left.\mathrm{O}-\mathrm{Cu} 3-\mathrm{O}=102.9(3)-127.58(17)^{\circ}\right)$ and one amino N atom and one $\mu_{4}-\mathrm{O}^{2-}$ ion at the axial positions $\left(\mathrm{N} 1-\mathrm{Cu} 3-\mathrm{O} 4=172.6(3)^{\circ}\right)$. Each tea ${ }^{3-}$ ligand acts in a $\mu_{4}: \eta^{1}: \eta^{2}$: $\eta^{2}: \eta^{2}$ mode to cap an outer $\mathrm{Cu}^{\mathrm{II}}$ atom and bridge one $\mathrm{Mn}^{\mathrm{II}}$ and two

[^0]

Figure 1. Molecular structure (a) and coordination environments (b) of $\mathbf{1}$. H atoms and lattice water molecules have been omitted for clarity. Symmetry: (a) $-y, x,-z ;(b) y,-x,-z ;(c)-x,-y, z ;(d)-y,-x, z ;$ (e) $-z,-x, y ;(f) x, z, y ;(g)-x, y,-z ;$ (h) $y, z, x ;(i) z, x, y ;(j) y, x, z ;(k)-y$, $z,-x$.

Figure 2. The adamantane-like Mn_{28} cluster containing six $\left[\mathrm{Mn}^{\mathrm{IV}}{ }_{2} \mathrm{Mn}^{\mathrm{II}}{ }_{2} \mathrm{O}_{4}\right]$ and four $\left[\mathrm{Mn}^{\mathrm{IV}}{ }_{3} \mathrm{Mn}^{\mathrm{II}} \mathrm{O}_{4}\right]$ cubanes via sharing all $\mathrm{Mn}^{\mathrm{IV}}$ atoms. Atom color code: $\mathrm{Mn}^{\mathrm{IV}}$, dark yellow; $\mathrm{Mn}^{\mathrm{III}}$, navy blue; $\mathrm{Mn}^{\mathrm{II}}$, magenta; O , red.
$\mathrm{Mn}^{\mathrm{III}}$ ions. There are three oxidation states for the manganese ions, which is uncommon for the manganese clusters. ${ }^{8,10,17}$ All Mn centers are six-coordinate (Figure S1), through interactions with five $\mu_{4^{-}}$ O^{2-} ions and one $\mu_{3}-\mathrm{O}^{2-}$ ion for Mn 1 in an essentially octahedral geometry (average $\mathrm{Mn} 1-\mathrm{O}=1.904 \AA$), one $\mu_{4}-\mathrm{O}^{2-}$ ion, two $\mu_{3^{-}}$ O^{2-} ions, two formate O atoms, and one alkoxide O atom for Mn 2 in a tetragonally elongated octahedral geometry (Mn2-O2 and $\mathrm{Mn} 2-\mathrm{O} 7=2.221(6)$ and $2.143(8) \AA$ constituting the JT axis), and three $\mu_{4}-\mathrm{O}^{2-}$ ions and three alkoxide O atoms for Mn 3 forming a distorted trigonal prism (average $\mathrm{Mn} 3-\mathrm{O}=2.190 \AA$), respectively.

The most striking structural feature is that all the 28 Mn ions are bridged by the $28 \mu_{4}-\mathrm{O}^{2-}$ and $12 \mu_{3}-\mathrm{O}^{2-}$ ions into $6 \mathrm{Mn}^{\mathrm{III}} 2^{-}$ $\mathrm{Mn}^{\mathrm{IV}}{ }_{2} \mathrm{O}_{4}$ cubanes $\left(\mathrm{Mn}-\mathrm{O}-\mathrm{Mn}=93.6(2)-102.5(2)^{\circ}\right)$ and $4 \mathrm{Mn}^{\mathrm{II}}-$ $\mathrm{Mn}^{\mathrm{IV}}{ }_{3} \mathrm{O}_{4}$ cubanes $\left(\mathrm{Mn}{ }^{\mathrm{II}}-\mathrm{O}-\mathrm{Mn}^{\mathrm{IV}}, \mathrm{Mn}^{\mathrm{IV}}-\mathrm{O}-\mathrm{Mn}^{\mathrm{IV}}=97.5(3)-\right.$ $\left.99.9(3)^{\circ}\right)$, which are further joined to be a cubane-based manganese cage via sharing all the $12 \mathrm{Mn}^{\mathrm{IV}}$ ions (Figure 2). Such a structure is unprecedented in the known high nuclearity Mn clusters. Finally, the connectivity of the $\left[\mathrm{Cu}_{17} \mathrm{Mn}_{28} \mathrm{O}_{40}\right]^{42+}$ core can be precisely

Figure 3. Plot of reduced magnetization $(M / N \beta)$ versus H / T for $\mathbf{1}$ in the temperature range of $1.8-4.0 \mathrm{~K}$ (5 kG (orange), 10 kG (dark green), 20 kG (brown), 30 kG (dark red), 40 kG (teal), 50 kG (dark blue), 60 kG (green), 70 kG (red)). Solid lines represent best theoretical fit. Inset illustrates $\chi_{\mathrm{m}} T$ versus T plot for complex $\mathbf{1}$ from 1.8 to 300 K (1 kG (black), 10 kG (red), 50 kG (blue)).

Figure 4. AC magnetic measurements for 1 at $H_{\mathrm{ac}}=5 \mathrm{G}$ and $H_{\mathrm{dc}}=0$.
described by noting that the central Cu 1 ion connects four $\mathrm{Mn}^{\mathrm{II}}-$ $\mathrm{Mn}^{\mathrm{IV}}{ }_{3} \mathrm{O}_{4}$ cubanes into a tetrahedral array. Six $\mathrm{Mn}^{\mathrm{II}}{ }_{2} \mathrm{Mn}^{\mathrm{IV}}{ }_{2} \mathrm{O}_{4}$ cubanes are located on the midlines of the six edges of the tetrahedron and connect the four $\mathrm{Mn}^{\mathrm{II}} \mathrm{Mn}^{\mathrm{IV}}{ }_{3} \mathrm{O}_{4}$ cubanes via the 12 $\mathrm{Mn}^{\mathrm{IV}}$ corners into an adamantane-like cage. Each of the four $\left[\mathrm{Cu}^{\mathrm{I}}-\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)$] groups (on 3-fold axes) connects three $\mathrm{Mn}^{\mathrm{III}}{ }_{2} \mathrm{Mn}^{\mathrm{IV}}{ }_{2} \mathrm{O}_{4}$ cubanes, and the outer $12 \mathrm{Cu}^{\mathrm{II}}$ ions connect the Mn_{28} cluster via the remaining $\mu_{4}-\mathrm{O}^{2-}$ sites.

DC magnetic susceptibility data were collected in fields ranging from 70 to 1 kG in the temperature range of $1.8-300 \mathrm{~K}$ (Figure 3). The reduced magnetization (M) versus H / T data cannot be fit to one state experiencing axial zero-field splitting $D \hat{S}_{z}^{2}$ (in fact, T_{d} symmetry does not allow this). The χT versus T data (inset Figure 3) taken at fields of less than 1 kG show a maximum of $\sim 325 \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} \mathrm{~K}$. This suggests a $S=51 / 2$ ground state in small fields, which is reasonable given that the $\mathrm{Mn}^{\text {III }} \cdots \mathrm{Mn}^{\text {III }}, \mathrm{Mn}^{\text {IV }} \cdots \mathrm{Mn}^{\text {IV }}$, and $\mathrm{Mn}^{\text {III }}$. $\cdot \cdot \mathrm{Mn}^{\mathrm{IV}}$ interactions within the cubane units are expected to be ferromagnetically coupled, while the $\mathrm{Mn}^{\mathrm{II}} \cdot \cdot \mathrm{Mn}^{\mathrm{IV}}, \mathrm{Cu}^{\mathrm{II}} \cdot \cdot \mathrm{Mn}^{\mathrm{III}}$, and $\mathrm{Cu}^{\mathrm{II}} \cdots \cdot \mathrm{Mn}^{\mathrm{IV}}$ interactions are antiferromagnetic which would give S $=12 S_{\mathrm{Mn}(\mathrm{IV})}+12 S_{\mathrm{Mn} \text { (III) }}-4 S_{\mathrm{Mn}(\text { II })}-13 S_{\mathrm{Cu}(\text { II })}=51 / 2$. The non-superimposability of isofields in the reduced magnetization versus H / T plot usually indicates the presence of axial zero-field interactions. However, we have fit all the data (solid lines in Figure 3) assuming that there is a $S=63 / 2$ excited state lying 5 K above the $S=51 / 2$ ground state. The fit is quite good, and it is important to emphasize that the model has no zero-field splitting for either of the states. This is consistent with the T_{d} symmetry that precludes the $D \hat{S}_{z}^{2}$ term in the spin Hamiltonian. High-frequency EPR studies have been initiated to verify the two spin state model.

AC magnetic susceptibility data for $\mathbf{1}$ (Figure 4) do show a frequency-dependent out-of-phase signal; however, only the onset
of the signal is seen. Lower temperature AC data or micro-SQUID data are needed to establish whether this interesting complex 1 functions as a single-molecule magnet.

In summary, we have established an approach to generate a giant heterometallic mixed-valent $\mathrm{Cu}^{\mathrm{I}} / \mathrm{Cu}^{\mathrm{II}} / \mathrm{Mn}^{\mathrm{I}} / \mathrm{Mn}^{\mathrm{II}} / \mathrm{Mn}^{\mathrm{IV}}$ cluster which contains an unprecedented adamantane-like Mn_{28} core connected wholly by $\mathrm{Mn}_{4} \mathrm{O}_{4}$ cubane units and exhibits unusual magnetic properties.

Acknowledgment. This work was supported by the NSFC (Nos. 20525102 \& 20471069), the FANEDD of China (200122), the Scientific and Technological Project of Guangdong Province (04205405), and the NSF (U.S.A.).

Supporting Information Available: Synthesis details, additional plots, and an X-ray crystallographic file in CIF format for the structural determination of $\mathbf{1}$. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Gatteschi, D.; Sessoli, R. Angew. Chem., Int. Ed. 2003, 42, 268-297. (b) Aromí, G.; Brechin, E. K. Struct. Bonding 2006, 122, 1-67.
(2) Sessoli, R.; Tsai, H.-L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1993, 115, 1804-1816.
(3) Price, J. P.; Batten, S. R.; Moubaraki, B.; Murray, K. S. Chem. Commun. 2002, 762-763.
(4) Brechin, E. K.; Sanudo, E. C.; Wernsdorfer, W.; Boskovic, C.; Yoo, J.; Hendrickson, D. N.; Yamaguchi, A.; Ishimoto, H.; Concolino, T. E.; Rheingold, X. A. L.; Christou, G. Inorg. Chem. 2005, 44, 502-511.
(5) Dendrinou-Samara, C.; Alexiou, M.; Zaleski, C. M.; Kampf, J. W.; Krik, M. L.; Kessissoglou, D. P.; Pecoraro, V. L. Angew. Chem., Int. Ed. 2003, 42, 3763-3766.
(6) Brockman, J. T.; Huffman, J. C.; Christou, G. Angew. Chem., Int. Ed. 2002, 41, 2506-2508.
(7) Murugesu, M.; Raftery, J.; Wernsdorfer, W.; Christou, G.; Brechin, E. K. Inorg. Chem. 2004, 43, 4203-4209.
(8) Murugesu, M.; Habrych, M.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. J. Am. Chem. Soc. 2004, 126, 4766-4767.
(9) (a) Jones, L. F.; Brechin, E. K.; Collison, D.; Harrison, A.; Teat, S. J.; Wernsdorfer, W. Chem. Commun. 2002, 2974-2975. (b) Jones, L. F.; Raftery, J.; Teat, S. J.; Collison, D.; Brechin, E. K. Polyhedron 2005, 24, 2443-2449.
(10) Soler, M.; Wernsdorfer, W.; Folting, K.; Pink, M.; Christou, G. J. Am. Chem. Soc. 2004, 126, 2156-2165.
(11) Tasiopoulos, A. J.; Vinslava, A.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. Angew. Chem., Int. Ed. 2004, 43, 2117-2121.
(12) (a) Khan, M. I.; Tabussum, S.; Doedens, R. J. Chem. Commun. 2003, 532. (b) Wittick, L. M.; Murray, K. S.; Moubaraki, B.; Batten, S. R.; Spiccia, L.; Berry, K. J. Dalton Trans. 2004, 1003-1011. (c) Murugesu, M.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. Angew. Chem., Int. Ed. 2005, 44, 892-896. (d) Rajaraman, G.; Murugesu, M.; Sanudo, E. C.; Soler, M.; Wernsdorfer, W.; Helliwell, M.; Muryn, C.; Raftery, J.; Teat, S. J.; Christou, G.; Brechin, E. K. J. Am. Chem. Soc. 2004, 126, 15445-15457. (e) Wittick, L. M.; Jones, L. F.; Jensen, P.; Moubaraki, B.; Spiccia, L.; Berry, K. L.; Murray, K. S. Dalton Trans. 2006, 15341543.
(13) (a) Makhankova, V. G.; Vassilyeva, O. Y.; Kokozay, V. N.; Skelton, B. W.; Reedijk, J.; Van Albada, G. A.; Sorace, L.; Gatteschi, D. New J. Chem. 2001, 25, 685-689. (b) Makhankova, V. G.; Vassilyeva, O. Y.; Kokozay, V. N.; Reedijk, J.; Van Albada, G. A.; Jezierska, J.; Skelton, B. W. Eur. J. Inorg. Chem. 2002, 2163-2169.
(14) (a) Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon: Oxford, 1988. (b) Murthy, N. N.; MahroofTahir, M.; Karlin, K. D. J. Am. Chem. Soc. 1993, 115, 10404-10405.
(15) Crystal data for $\mathbf{1}: \mathrm{C}_{78} \mathrm{H}_{230} \mathrm{Cu}_{17} \mathrm{Mn}_{28} \mathrm{~N}_{12} \mathrm{O}_{128}, 6003.24 \mathrm{~g} \mathrm{~mol}^{-1}$, cubic I $\overline{4} 3 \mathrm{~m}$, $a=20.3441(9) \AA, V=8420.1(6) \AA^{3}, Z=2, \rho=2.368 \mathrm{~g} \mathrm{~cm}^{-3}, T=123$ $\mathrm{K}, \mu=4.229 \mathrm{~mm}^{-1}, F(000)=5998,2 \theta_{\text {max }}=56.0^{\circ}, S=1.086$. The structure was solved by direct methods and refined on F^{2} to $R_{1}\left(w R_{2}\right) 0.0456$ (0.1177) using 1758 reflections with $I>2 \sigma(\mathrm{I})$.
(16) (a) Bond valence sum calculations for $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Mn}^{\text {III }}$, and $\mathrm{Mn}^{\mathrm{IV}}$ ions gave oxidation state values of $2.193,3.350$, and 4.413 , respectively, and Cu^{I} and $\mathrm{Cu}^{\mathrm{II}}$ ions gave oxidation state values of 1.284 and $1.797-1.951$, respectively. (b) Liu, W.; Thorp, H. H. Inorg. Chem. 1993, 32, 41024105.
(17) Sun, Z.; Gantzel, P. K.; Hendrickson, D. N. Inorg. Chem. 1996, 35, 6640-6641.
JA065707L

[^0]: ${ }^{\dagger}$ Sun Yat-Sen University.
 § Osaka University.

 + University of California at San Diego.

